Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38472875

RESUMEN

To better query regional sources of metal(loid) exposure in an under-communicated region, available scientific literature from 50 national universities (undergraduate and graduate theses and dissertations), peer-reviewed journals, and reports published in Spanish and English were synthesized with a focus on metal(loid) bioaccumulation in Peruvian food and medicinal products utilized locally. The study considered 16 metal(loid)s that are known to exert toxic impacts on humans (Hg, Al, Sb, As, Ba, Be, Cd, Cr, Sn, Ni, Ag, Pb, Se, Tl, Ti, and U). A total of 1907 individual analyses contained within 231 scientific publications largely conducted by Peruvian universities were analyzed. These analyses encompassed 239 reported species classified into five main food/medicinal groups-plants, fish, macroinvertebrates and mollusks, mammals, and "others" category. Our benchmark for comparison was the World Health Organization (Codex Alimentarius) standards. The organisms most frequently investigated included plants such as asparagus, corn, cacao, and rice; fish varieties like trout, tuna, and catfish; macroinvertebrates and mollusks including crab and shrimp; mammals such as alpaca, cow, chicken eggs, and milk; and other categories represented by propolis, honey, lichen, and edible frog. Bioaccumulation-related research increased from 2 to more than 25 publications per year between 2006 and 2022. The results indicate that Peruvian food and natural medicinal products can have dangerous levels of metal(loid)s, which can cause health problems for consumers. Many common and uncommon food/medicinal products and harmful metals identified in this analysis are not regulated on the WHO's advisory lists, suggesting the urgent need for stronger regulations to ensure public safety. In general, Cd and Pb are the metals that violated WHO standards the most, although commonly non-WHO regulated metals such as Hg, Al, As, Cr, and Ni are also a concern. Metal concentrations found in Peru are on many occasions much higher than what has been reported elsewhere. We conclude that determining the safety of food/medicinal products is challenging due to varying metal concentrations that are influenced not only by metal type but also geographical location. Given the scarcity of research findings in many regions of Peru, urgent attention is required to address this critical knowledge gap and implement effective regulatory measures to protect public health.

2.
Water Res ; 252: 121200, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309061

RESUMEN

The metalloids boron and arsenic are ubiquitous and difficult to remove during water treatment. As chemical pretreatment using strong base and oxidants can increase their rejection during membrane-based nanofiltration (NF), we examined a nature-based pretreatment approach using benthic photosynthetic processes inherent in a unique type of constructed wetland to assess whether analogous gains can be achieved without the need for exogenous chemical dosing. During peak photosynthesis, the pH of the overlying clear water column above a photosynthetic microbial mat (biomat) that naturally colonizes shallow, open water constructed wetlands climbs from circumneutral to approximately 10. This biological increase in pH was reproduced in a laboratory bioreactor and resulted in analogous increases in NF rejection of boron and arsenic that is comparable to chemical dosing. Rejection across the studied pH range was captured using a monoprotic speciation model. In addition to this mechanism, the biomat accelerated the oxidation of introduced arsenite through a combination of abiotic and biotic reactions. This resulted in increases in introduced arsenite rejection that eclipsed those achieved solely by pH. Capital, operation, and maintenance costs were used to benchmark the integration of this constructed wetland against chemical dosing for water pretreatment, manifesting long-term (sub-decadal) economic benefits for the wetland-based strategy in addition to social and environmental benefits. These results suggest that the integration of nature-based pretreatment approaches can increase the sustainability of membrane-based and potentially other engineered treatment approaches for challenging water contaminants.


Asunto(s)
Arsénico , Arsenitos , Contaminantes Químicos del Agua , Arsénico/análisis , Boro , Humedales , Fotosíntesis , Contaminantes Químicos del Agua/análisis
3.
Microorganisms ; 10(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889133

RESUMEN

Rubber is a natural product, the main car tire component. Due to the characteristics acquired by this material after its vulcanization process, its degradation under natural conditions requires very long times, causing several environmental problems. In the present work, the existence of a bacterial consortium isolated from a discarded tire found within the Socabaya River with the ability to degrade shredded tire rubber without any chemical pretreatment is explored. Taking into consideration the complex chemical composition of a rubber tire and the described benefits of the use of pretreatments, the study is developed as a preliminary analysis. The augmentative growth technique was used, and the level of degradation was quantified as a percentage through the analysis of microbial respiration. Schiff's test and the use of comparative photographs of scanning electron microscopy (SEM) were also used. The consortium using next generation genetic sequencing was analyzed. A 4.94% degradation point was obtained after 20 days of experimentation, and it was found that the consortium was mostly made up with Delftia tsuruhatensis with 69.12% of the total genetic readings of the consortium and the existence of 15% of unidentified microbial strains at the genre level. The role played by the organisms in the degradation process is unknown. However, the positive results in the tests carried out show that the consortium had action on the shredded tire, showing a mineralization process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...